3d Computer Design Essay

Computer animation is the process used for generating animated images. The more general term computer-generated imagery (CGI) encompasses both static scenes and dynamic images, while computer animationonly refers to the moving images. Modern computer animation usually uses 3D computer graphics, although 2D computer graphics are still used for stylistic, low bandwidth, and faster real-time renderings. Sometimes, the target of the animation is the computer itself, but sometimes film as well.

Computer animation is essentially a digital successor to the stop motion techniques using 3D models, and traditional animation techniques using frame-by-frame animation of 2D illustrations. Computer-generated animations are more controllable than other more physically based processes, constructing miniatures for effects shots or hiring extras for crowd scenes, and because it allows the creation of images that would not be feasible using any other technology. It can also allow a single graphic artist to produce such content without the use of actors, expensive set pieces, or props. To create the illusion of movement, an image is displayed on the computer monitor and repeatedly replaced by a new image that is similar to it, but advanced slightly in time (usually at a rate of 24, 25 or 30 frames/second). This technique is identical to how the illusion of movement is achieved with television and motion pictures.

For 3D animations, objects (models) are built on the computer monitor (modeled) and 3D figures are rigged with a virtual skeleton. For 2D figure animations, separate objects (illustrations) and separate transparent layers are used with or without that virtual skeleton. Then the limbs, eyes, mouth, clothes, etc. of the figure are moved by the animator on key frames. The differences in appearance between key frames are automatically calculated by the computer in a process known as tweening or morphing. Finally, the animation is rendered.

For 3D animations, all frames must be rendered after the modeling is complete. For 2D vector animations, the rendering process is the key frame illustration process, while tweened frames are rendered as needed. For pre-recorded presentations, the rendered frames are transferred to a different format or medium, like digital video. The frames may also be rendered in real time as they are presented to the end-user audience. Low bandwidth animations transmitted via the internet (e.g. Adobe Flash, X3D) often use software on the end-users computer to render in real time as an alternative to streaming or pre-loaded high bandwidth animations.

Explanation[edit]

To trick the eye and the brain into thinking they are seeing a smoothly moving object, the pictures should be drawn at around 12 frames per second or faster. (A frame is one complete image.) With rates above 75-120 frames per second, no improvement in realism or smoothness is perceivable due to the way the eye and the brain both process images. At rates below 12 frames per second, most people can detect jerkiness associated with the drawing of new images that detracts from the illusion of realistic movement. Conventional hand-drawn cartoon animation often uses 15 frames per second in order to save on the number of drawings needed, but this is usually accepted because of the stylized nature of cartoons. To produce more realistic imagery, computer animation demands higher frame rates.

Films seen in theaters in the United States run at 24 frames per second, which is sufficient to create the illusion of continuous movement. For high resolution, adapters are used.

History[edit]

Main article: History of computer animation

See also: Timeline of computer animation in film and television

Early digital computer animation was developed at Bell Telephone Laboratories in the 1960s by Edward E. Zajac, Frank W. Sinden, Kenneth C. Knowlton, and A. Michael Noll. Other digital animation was also practiced at the Lawrence Livermore National Laboratory.

In 1967, a computer animation named "Hummingbird" was created by Charles Csuri and James Shaffer [6].

In 1968, a computer animation was created, depicting a cat moving around [7].

In 1971, a computer animation called "Metadata" was created, showing various shapes [8].

An early step in the history of computer animation was the sequel to the 1973 film Westworld, a science-fiction film about a society in which robots live and work among humans. The sequel, Futureworld (1976), used the 3D wire-frame imagery, which featured a computer-animated hand and face both created by University of Utah graduates Edwin Catmull and Fred Parke. This imagery originally appeared in their student film A Computer Animated Hand, which they completed in 1972.

Developments in CGI technologies are reported each year at SIGGRAPH, an annual conference on computer graphics and interactive techniques that is attended by thousands of computer professionals each year. Developers of computer games and 3D video cards strive to achieve the same visual quality on personal computers in real-time as is possible for CGI films and animation. With the rapid advancement of real-time rendering quality, artists began to use game engines to render non-interactive movies, which led to the art form Machinima.

The very first full length computer animated television series was ReBoot, which debuted in September 1994; the series followed the adventures of characters who lived inside a computer. The first feature-length computer animated film was Toy Story (1995), which was made by Pixar.[19] It followed an adventure centered around toys and their owners. This groundbreaking film was also the first of many fully computer-animated movies.

Animation methods[edit]

In most 3D computer animation systems, an animator creates a simplified representation of a character's anatomy, which is analogous to a skeleton or stick figure. The position of each segment of the skeletal model is defined by animation variables, or Avars for short. In human and animal characters, many parts of the skeletal model correspond to the actual bones, but skeletal animation is also used to animate other things, with facial features (though other methods for facial animation exist). The character "Woody" in Toy Story, for example, uses 700 Avars (100 in the face alone). The computer doesn't usually render the skeletal model directly (it is invisible), but it does use the skeletal model to compute the exact position and orientation of that certain character, which is eventually rendered into an image. Thus by changing the values of Avars over time, the animator creates motion by making the character move from frame to frame.

There are several methods for generating the Avar values to obtain realistic motion. Traditionally, animators manipulate the Avars directly. Rather than set Avars for every frame, they usually set Avars at strategic points (frames) in time and let the computer interpolate or tween between them in a process called keyframing. Keyframing puts control in the hands of the animator and has roots in hand-drawn traditional animation.

In contrast, a newer method called motion capture makes use of live action footage. When computer animation is driven by motion capture, a real performer acts out the scene as if they were the character to be animated. His/her motion is recorded to a computer using video cameras and markers and that performance is then applied to the animated character.

Each method has its advantages and as of 2007, games and films are using either or both of these methods in productions. Keyframe animation can produce motions that would be difficult or impossible to act out, while motion capture can reproduce the subtleties of a particular actor. For example, in the 2006 film Pirates of the Caribbean: Dead Man's Chest, Bill Nighy provided the performance for the character Davy Jones. Even though Nighy doesn't appear in the movie himself, the movie benefited from his performance by recording the nuances of his body language, posture, facial expressions, etc. Thus motion capture is appropriate in situations where believable, realistic behavior and action is required, but the types of characters required exceed what can be done throughout the conventional costuming.

Modeling[edit]

3D computer animation combines 3D models of objects and programmed or hand "keyframed" movement. These models are constructed out of geometrical vertices, faces, and edges in a 3D coordinate system. Objects are sculpted much like real clay or plaster, working from general forms to specific details with various sculpting tools. Unless a 3D model is intended to be a solid color, it must be painted with "textures" for realism. A bone/joint animation system is set up to deform the CGI model (e.g., to make a humanoid model walk). In a process known as rigging, the virtual marionette is given various controllers and handles for controlling movement. Animation data can be created using motion capture, or keyframing by a human animator, or a combination of the two.

3D models rigged for animation may contain thousands of control points — for example, "Woody" from Toy Story uses 700 specialized animation controllers. Rhythm and Hues Studios labored for two years to create Aslan in the movie The Chronicles of Narnia: The Lion, the Witch and the Wardrobe, which had about 1,851 controllers (742 in the face alone). In the 2004 film The Day After Tomorrow, designers had to design forces of extreme weather with the help of video references and accurate meteorological facts. For the 2005 remake of King Kong, actor Andy Serkis was used to help designers pinpoint the gorilla's prime location in the shots and used his expressions to model "human" characteristics onto the creature. Serkis had earlier provided the voice and performance for Gollum in J. R. R. Tolkien's The Lord of the Rings trilogy.

Equipment[edit]

Computer animation can be created with a computer and an animation software. Some impressive animation can be achieved even with basic programs; however, the rendering can take a lot of time on an ordinary home computer. Professional animators of movies, television and video games could make photorealistic animation with high detail. This level of quality for movie animation would take hundreds of years to create on a home computer. Instead, many powerful workstation computers are used. Graphics workstation computers use two to four processors, and they are a lot more powerful than an actual home computer and are specialized for rendering. A large number of workstations (known as a "render farm") are networked together to effectively act as a giant computer. The result is a computer-animated movie that can be completed in about one to five years (however, this process is not composed solely of rendering). A workstation typically costs $2,000-16,000 with the more expensive stations being able to render much faster due to the more technologically-advanced hardware that they contain. Professionals also use digital movie cameras, motion/performance capture, bluescreens, film editing software, props, and other tools used for movie animation.

Facial animation[edit]

Main article: Computer facial animation

The realistic modeling of human facial features is both one of the most challenging and sought after elements in computer-generated imagery. Computer facial animation is a highly complex field where models typically include a very large number of animation variables. Historically speaking, the first SIGGRAPH tutorials on State of the art in Facial Animation in 1989 and 1990 proved to be a turning point in the field by bringing together and consolidating multiple research elements and sparked interest among a number of researchers.

The Facial Action Coding System (with 46 "action units", "lip bite" or "squint"), which had been developed in 1976, became a popular basis for many systems. As early as 2001, MPEG-4 included 68 Face Animation Parameters (FAPs) for lips, jaws, etc., and the field has made significant progress since then and the use of facial microexpression has increased.

In some cases, an affective space, the PAD emotional state model, can be used to assign specific emotions to the faces of avatars. In this approach, the PAD model is used as a high level emotional space and the lower level space is the MPEG-4 Facial Animation Parameters (FAP). A mid-level Partial Expression Parameters (PEP) space is then used to in a two-level structure – the PAD-PEP mapping and the PEP-FAP translation model.

Realism[edit]

Realism in computer animation can mean making each frame look photorealistic, in the sense that the scene is rendered to resemble a photograph or make the characters' animation believable and lifelike. Computer animation can also be realistic with or without the photorealistic rendering.

One of the greatest challenges in computer animation has been creating human characters that look and move with the highest degree of realism. Part of the difficulty in making pleasing, realistic human characters is the uncanny valley, the concept where the human audience (up to a point) tends to have an increasingly negative, emotional response as a human replica looks and acts more and more human. Films that have attempted photorealistic human characters, such as The Polar Express,[41][42][43]Beowulf,[44] and A Christmas Carol[45][46] have been criticized as "creepy" and "disconcerting".

The goal of computer animation is not always to emulate live action as closely as possible, so many animated films instead feature characters who are anthropomorphic animals, fantasy creatures and characters, superheroes, or otherwise have non-realistic, cartoon-like proportions. Computer animation can also be tailored to mimic or substitute for other kinds of animation, traditional stop-motion animation (as shown in Flushed Away or The Lego Movie). Some of the long-standing basic principles of animation, like squash & stretch, call for movement that is not strictly realistic, and such principles still see widespread application in computer animation.

Films[edit]

CGI short films have been produced as independent animation since 1976. An early example of an animated feature film to incorporate CGI animation was the 1983 Japanese anime film Golgo 13: The Professional.[50] The popularity of computer animation (especially in the field of special effects) skyrocketed during the modern era of U.S. animation. The first completely computer-animated movie was Toy Story (1995), but VeggieTales is the first American fully 3D computer animated series sold directly (made in 1993), that started animation series such as ReBoot in 1994.

Animation studios[edit]

Main article: List of animation studios

Some notable producers of computer-animated feature films include:

  • Animal Logic - Films include Happy Feet (2006), Walking with Dinosaurs (2013) and The Lego Movie (2014)
  • Blue Sky Studios - Films include Ice Age (2002), Rio (2011), The Peanuts Movie (2015)
  • DreamWorks Animation - Films include Shrek (2001), Kung Fu Panda (2008), How to Train Your Dragon (2010)
  • Illumination Entertainment — Films include Despicable Me (2010), Minions (2015), The Secret Life of Pets (2016)
  • Industrial Light & Magic - Films include Rango (2011) and Strange Magic (2015)
  • Pixar - Films include Toy Story (1995), Finding Nemo (2003), Cars (2006)
  • Reel FX Animation Studios - Films include Free Birds (2013) and The Book of Life (2014)
  • Sony Pictures Animation - Films include Cloudy with a Chance of Meatballs (2009), The Smurfs (2011), Hotel Transylvania (2012)
  • Sony Pictures Imageworks - Films include The Angry Birds Movie (2016)
  • Walt Disney Animation Studios - Films include Tangled (2010), Wreck-It Ralph (2012), Frozen (2013)
  • Warner Animation Group - Films include The Lego Movie (2014), and Storks (2016)
  • Triggerfish Animation Studios - Films include Zambezia (film) (2013), Khumba (2014)

Web animations[edit]

The popularity of websites that allow members to upload their own movies for others to view has created a growing community of amateur computer animators. With utilities and programs often included free with modern operating systems, many users can make their own animated movies and shorts. Several free and open source animation software applications exist as well. The ease at which these animations can be distributed has attracted professional animation talent also. Companies such as PowToon and GoAnimate attempt to bridged the gap by giving amateurs access to professional animations as clip art.

The oldest (most backward compatible) web-based animations are in the animated GIF format, which can be uploaded and seen on the web easily. However, the raster graphics format of GIF animations slows the download and frame rate, especially with larger screen sizes. The growing demand for higher quality web-based animations was met by a vector graphics alternative that relied on the use of a plugin. For decades, Flash animations were the most popular format, until the web development community abandoned support for the Flash player plugin. Web browsers on mobile devices and mobile operating systems never fully supported the Flash plugin.

By this time, internet bandwidth and download speeds increased, making raster graphic animations more convenient. Some of the more complex vector graphic animations had a slower frame rate due to complex rendering than some of the raster graphic alternatives. Many of the GIF and Flash animations were already converted to digital video formats, which were compatible with mobile devices and reduced file sizes via video compression technology. However, compatibility was still problematic as some of the popular video formats such as Apple's QuickTime and Microsoft Silverlight required plugins. YouTube, the most popular video viewing website, was also relying on the Flash plugin to deliver digital video in the Flash Video format.

The latest alternatives are HTML5 compatible animations. Technologies such as JavaScript and CSS animations made sequencing the movement of images in HTML5 web pages more convenient. SVG animations offered a vector graphic alternative to the original Flash graphic format, SmartSketch. YouTube offers an HTML5 alternative for digital video. APNG (Animated PNG) offered a raster graphic alternative to animated GIF files that enables multi-level transparency not available in GIFs

See also: Comparison of HTML5 and Flash

Detailed examples and pseudocode[edit]

In 2D computer animation, moving objects are often referred to as "sprites." A sprite is an image that has a location associated with it. The location of the sprite is changed slightly, between each displayed frame, to make the sprite appear to move. The following pseudocode makes a sprite move from left to right:

varint x := 0, y := screenHeight / 2; while x < screenWidth drawBackground() drawSpriteAtXY (x, y) // draw on top of the background x := x + 5 // move to the right

Computer animation uses different techniques to produce animations. Most frequently, sophisticated mathematics is used to manipulate complex three-dimensional polygons, apply "textures", lighting and other effects to the polygons and finally rendering the complete image. A sophisticated graphical user interface may be used to create the animation and arrange its choreography. Another technique called constructive solid geometry defines objects by conducting boolean operations on regular shapes, and has the advantage that animations may be accurately produced at any resolution.

Computer-assisted vs. computer-generated[edit]

To animate means, figuratively, to "give life to". There are two basic methods that animators commonly use to accomplish this.

Computer-assisted animation is usually classed as two-dimensional (2D) animation. Creators drawings either hand drawn (pencil to paper) or interactively drawn(drawn on the computer) using different assisting appliances and are positioned into specific software packages. Within the software package the creator will place drawings into different key frames which fundamentally create an outline of the most important movements. The computer will then fill in all the "in-between frames", commonly known as Tweening. Computer-assisted animation is basically using new technologies to cut down the time scale that traditional animation could take, but still having the elements of traditional drawings of characters or objects.[57]

Three examples of films using computer-assisted animation are Beauty and the Beast, The Road to El Dorado and Tarzan.

Computer-generated animation is known as 3-dimensional (3D) animation. Creators will design an object or character with an X,Y and Z axis. Unlike the traditional way of animation no pencil to paper drawings create the way computer generated animation works. The object or character created will then be taken into a software, key framing and tweening are also carried out in computer generated animation but are also a lot of techniques used that do not relate to traditional animation. Animators can break physical laws by using mathematical algorithms to cheat, mass, force and gravity rulings. Fundamentally, time scale and quality could be said to be a preferred way to produce animation as they are two major things that are enhanced by using computer generated animation. Another positive aspect of CGA is the fact one can create a flock of creatures to act independently when created as a group. An animal's fur can be programmed to wave in the wind and lie flat when it rains instead of programming each strand of hair separately.[57]

A few examples of computer-generated animation movies are Tangled, Toy Story, Frozen, Inside Out, Shrek, Finding Nemo, Mr. Peabody & Sherman and Zootopia.

See also[edit]

References[edit]

Citations[edit]

  1. ^[1]
  2. ^[2]
  3. ^[3]
  4. ^"Our Story", Pixar, 1986-2013. Retrieved on 2013-02-15. "The Pixar Timeline, 1979 to Present". Pixar. Archived from the original on 2015-09-05. 
  5. ^Zacharek, Stephanie (2004-11-10). "The Polar Express". Salon. Retrieved 2015-06-08. 
  6. ^Herman, Barbara (2013-10-30). "The 10 Scariest Movies and Why They Creep Us Out". Newsweek. Retrieved 2015-06-08. 
  7. ^Clinton, Paul (2004-11-10). "Review: 'Polar Express' a creepy ride". CNN. Retrieved 2015-06-08. 
  8. ^Digital Actors in ‘Beowulf’ Are Just Uncanny - New York Times, November 14, 2007
  9. ^Neumaier, Joe (November 5, 2009). "Blah, humbug! 'A Christmas Carol's 3-D spin on Dickens well done in parts but lacks spirit". New York Daily News. Retrieved October 10, 2015. 
  10. ^Williams, Mary Elizabeth (November 5, 2009). "Disney's 'A Christmas Carol': Bah, humbug!". Salon.com. Archived from the original on January 11, 2010. Retrieved October 10, 2015. 
  11. ^Beck, Jerry (2005). The Animated Movie Guide. Chicago Review Press. p. 216. ISBN 1569762228. 
  12. ^ abRoos, Dave (2013). "How Computer Animation Works". HowStuffWorks. Retrieved 2013-02-15. 

Works cited[edit]

  • Beane, Andy (2012). 3D Animation Essentials. Indianapolis, Indiana: John Wiley & Sons. ISBN 978-1-118-14748-1. 
  • Kuperberg, Marcia (2002). A Guide to Computer Animation: For TV, Games, Multimedia and Web. Focal Press. ISBN 0-240-51671-0. 
  • Magnenat Thalmann, Nadia; Thalmann, Daniel (2004). Handbook of Virtual Humans. Wiley Publishing. ISBN 0-470-02316-3. 
  • Masson, Terrence (1999). CG 101: A Computer Graphics Industry Reference. Digital Fauxtography Inc. ISBN 0-7357-0046-X. 
  • Means, Sean P. (December 28, 2011). "Pixar founder's Utah-made Hand added to National Film Registry". The Salt Lake Tribune. Retrieved January 8, 2012. 
  • Paiva, Ana; Prada, Rui; Picard, Rosalind W. (2007). "Facial Expression Synthesis using PAD Emotional Parameters for a Chinese Expressive Avatar". Affective computing and intelligent interaction. Springer Science+Business Media. ISBN 3-540-74888-1. 
  • Parent, Rick (2012). Computer Animation: Algorithms and Techniques. Ohio: Elsevier. ISBN 978-0-12-415842-9. 
  • Pereira, Fernando C. N.; Ebrahimi, Touradj (2002). The MPEG-4 Book. New Jersey: IMSC Press. ISBN 0-13-061621-4. 
  • Parke, Frederic I.; Waters, Keith (2008). Computer Facial Animation (2nd ed.). Massachusetts: A.K. Peters, Ltd. ISBN 1-56881-448-8. 
  • Sito, Tom (2013). Moving Innovation: A History of Computer Animation. Massachusetts: MIT Press. ISBN 978-0-262-01909-5. 

External links[edit]

  • Galería 3D, Half a century of 3D Computer Animations (1962-2002)
An example of computer animation which is produced in the "motion capture" technique
A ray-traced 3-D model of a jack inside a cube, and the jack alone below.

Meet the Expert

Howard A. Kuhn, PhD

Dr. Kuhn is a Professor in the Swanson School of Engineering at the University of Pittsburgh, where he teaches additive manufacturing and engineering entrepreneurship, and supports research in tissue engineering for biomedical devices. He is also a senior technologist at The ExOne Company and a technical adviser for America Makes, the National Additive Manufacturing Innovation Institute, which is driven by the National Center for Defense Manufacturing and Machining (NCDMM).

In September 2015, a 54-year-old cancer patient became the first human to receive a 3D printed implant — a custom-designed rib cage to replace his sternum and pieces of four ribs severely damaged when doctors removed a large tumor. The prosthetic sternum has four thin, flexible rods that bend the same way ribs would during breathing. It was made entirely from titanium, using a $1.3 million metal printer at a government-run lab. The complex prosthetic would have been almost impossible to manufacture through traditional means. From manufacturing to medicine, food to fashion, and electronics to education, 3D printing is reshaping and revolutionizing the way products are developed and produced.

Despite the media attention, there is still a great deal of misinformation about what 3D printing is, what it can do, and what its future may hold. Find out facts and statistics that help define the scope of 3D printing, learn more about advances in the technology and its future possibilities, and discover how a degree in computer science can lead to a career in this exciting and expanding field.

3D Printing: The Next Big Thing

There has been enough change in the last few years that 3D printing has actually already begun to make quite a dent in the amount of manufacturing going on in the United States.

To understand the impact that 3D printing is having, it’s important to start with a workable definition. 3D printing—also known as “additive manufacturing”—is the process of creating a three-dimensional object by applying, or adding, material in successive layers through the control of a computer. The 3D printing process, in basic terms, includes the following steps:

1

The manufacturer creates a digital model of the object to be produced, normally by using a computer-aided design (CAD) program and employing some form of 3D scanning.

2

The CAD model is converted into an appropriate file format, such as STL (stereolithography).

3

The STL file is transferred to the computer that directly controls the 3D printer (a process similar to transferring a file to a standard printer when printing a document).

4

The 3D printer is readied for the job. Containers are loaded with the appropriate printing materials (polymers and binders, for example), and a foundation tray for the finished object is set up.

5

The printer builds the object, layer by layer. This process can take hours, or even days, depending on the size and complexity of the object and the materials used to create it.

6

Once the 3D printer has completed the building process, the object is removed from the machine. The object may require some post-manufacturing actions, such as brushing and polishing, as well as the removal of water-soluble supports. The object may also require time to cure before it can be used.

Where Can You Find 3D Printing Technology Today?

3D printed objects are already being used in a wide range of fields, from health to home décor, and the number is growing. Below is a list of some of the most common industries that use 3D printing in some way, along with some of the most creative:

Industrial/Manufacturing

The manufacturing industry is the leader in 3D printing. Here, the technology has revolutionizing virtually all sectors, including consumer electronics, aerospace, automotive, defense, and myriad other commercial and consumer products. According to a June 2014 survey by PricewaterhouseCoopers (PwC), 66.7 percent of manufacturers are currently employing 3D printing in some way, with another 24.7 percent planning to adopt it in the future. While most of these companies are still in the experimental or prototyping stages, PwC estimates 10 percent are using the technology in actual production, and that number is expected to grow over time.

Medicine/Health

The match between additive manufacturing and bio devices is natural because you’re dealing with individuals that are different, and that’s one of the advantages to additive manufacturing—making one-of-a-kind parts.

This is probably the field where the most innovative applications of 3D printing technology are happening today. The idea of creating new, living body parts to replace ones that are damaged seems only possible in a sci-fi film, but such projects are underway at universities, hospitals and research centers around the world. These 3D printing projects include bioprint tissues and organs, customized implants and prostheses, anatomical models for surgical procedures, and growing embryonic stem cells.

Dentistry

3D printing has been used in dentistry to create custom-designed teeth, bridges and crowns. With advances in materials and processes, it’s possible that dentists will soon be able to produce personalized, 3D printed teeth in their offices, in as little as ten minutes.

Construction

The key to using 3D printing in construction is applying the existing technology on a very large scale. China is currently leading the way, with one company, WinSun, purportedly having built ten houses with a 3D printer in just 24 hours, as well as a five-story apartment building. Using industrial and construction waste mixed with cement, parts are printed on an array of 3D printers and then assembled on-site. The company has also partnered with Dubai and in June 2015 announced plans to build the world’s first fully functional 3D printed office building, a project that will result in significantly reduced production time, labor costs, and waste. Similar projects for homes and office buildings are currently planned in the United States and Europe.

Art

3D printing and art are two fields that seem to be custom-made for each other. As the availability and variety of printers goes up and the costs of producing 3D printed objects goes down, artists of every kind—sculptors in particular—are taking advantage of 3D technology to stretch the limits. Artists are employing a number of materials for 3D printing, including polymers, clay and metals, in the creation of sculptures, pottery and jewelry.

Food

The development of 3D printed, edible products is real and growing. Although limited at the moment to food items such as desserts and pizza, the technology has the potential to expand to the development of highly nutritious foods using alternative sources such as algae and legumes. The resulting products could then be used to help feed large populations in developing regions.

Education

Though slower to expand (mostly due to budget and, sometimes, a lack of familiarity), 3D printing is believed to have the potential to enhance school curriculum at all levels, from elementary to college. It has already helped visual learners with graphs, equations, and complex mathematical models. Others classroom areas or topics that 3D printing has touched include geography and geology, replicas of ancient artifacts for hands-on teaching, and art. Additionally, with the right resources, 3D printing can be built into everyday lesson plans, giving educators an opportunity to present information and educational content in creative and interactive ways that were never available in previous generations.

Benefits of 3D Printing

Because 3D printing is relatively new, it can be difficult to separate reality from speculation, but many advantages have already proven themselves. Take a look at some of the most important:

Cost savings

Prototyping is an expensive stage in the development of almost any new product. The tooling and retooling necessary to design and produce a succession of prototypes using conventional methods can be cost-prohibitive. As a result, many innovative products never get the chance to reach everyday consumers. Significant cost savings can be found by creating prototypes through the use of CAD design and additive manufacturing.

Shorter time-to-market

It was Benjamin Franklin who said, “Remember that time is money.” When it comes to science, technology and especially business, Franklin couldn’t have been more correct. Prototyping can be a time-consuming process; one that may need be to done multiple times before an idea is ready for mass production. In some cases, the rapid prototyping from 3D printing can reduce the development process of a new product from months to days.

More customization and personalization

A significant benefit of 3D printing is the ability to create highly customizable products. While in some cases, this benefit may simply help manufacturers cater to customers’ personal wants, it can be more life altering in other situations. In medicine, for example, the customization of obstetric and prosthetic devices can be the difference between a patient maintaining and permanently losing mobility. Or, in the case of creating or replacing a body part or organ, such personalization could potentially increase the chances of a patient’s body accepting the new organ.

Communication and feedback

One of the most difficult questions a company must answer when ramping up to manufacture a new product is, “How do we sell this new product to potential investors and consumers?” It’s a question that might be best answered with another: “How can we present our investors and customers with a model of our product that shows exactly how it looks, feels and operates, before we start production?” 3D printing allows manufacturers to do just that—it increases the chances for valuable feedback to fine-tune a product, better assuring its acceptance by consumers once it leaves the assembly line.

Challenges Facing 3D Printing’s Future

Every new technology brings not only a number of exciting benefits and possibilities, but also a slew of new challenges. While 3D printing’s future remains bright, it is important to not overlook the current and potential challenges ahead. Here’s a look at a few:

Safety, security, and quality standards

The magic of 3D printing is that it makes designing and building amazing products accessible to anyone with a 3D printer. The flip side, however, is that individuals also gain the means to produce items that may be dangerous to the safety and security of themselves and others. Potential dangers include weapons like guns and knives; non-standardized items, and replacement parts that circumvent the regulatory processes and safety guidelines put in place to control them, as well as counterfeit products that may be of substandard quality.

Regulations, patents, and infringement

Design applications for 3D printed products are subject to copyright just like those developed by traditional means. Given the democratized nature of 3D printing production, patent and copyright processes and regulations may become unfeasible, provoking lawsuits and other regulatory issues. It is also illegal for anyone to manufacture or distribute a 3D printed version of a patented item without the permission of the patent holder, raising additional concerns of how the judicial system will handle the inevitable criminal and civil litigation surrounding patent infringement issues.

High energy consumption

While promoters tout the potential savings in energy that 3D printing may bring in the future, the current reality is somewhat different. Some types of 3D printers in use today are energy hogs. The Environmentally Benign Manufacturing (EBM) research group at MIT, for example, determined in 2009 that direct-metal laser-sintering (DMLS), a system of 3D printing using metal granules fused together, consumes hundreds of times more electrical power than conventional casting and machining processes. Large-scale metal processes are expected to make substantial gains in energy consumption as research and development continues, but for now, high energy use remains a significant concern.

Environmental concerns

Increased energy consumption plays a key role in the continuing reliance on nonrenewable energy sources such as coal and oil, causing real problems for the environment. In addition to high energy consumption, 3D printing poses a number of other environmental challenges, such as air pollution and greater reliance on plastics. While much research is needed to better understand these problems, one study from the Illinois Institute of Technology has indicated that commercial desktop 3D printers in use today emit nanoparticles of plastic that may pose a substantial health risk, and are notoriously difficult to clean up.

Degrees Leading to Careers in 3D Printing

Regarding the educational aspect, all of these things—whether it be additive manufacturing in biomedical applications, or biomedical in industrial applications, or even in other technologies—they are all based on a deep understanding of very fundamental science.

Because it’s still in an experimental phase, most colleges don’t offer degree programs specifically in 3D printing. Colleges and universities are working to catch up, however, with many now offering courses on the topic within engineering and computer science degree programs. For those interested in a career in 3D printing, there are already a number of options available. Below are examples of potential academic paths and careers.

Software Development

One of the biggest concerns in the 3D printing industry is the need for better and, perhaps most importantly, more user-friendly software to design and manufacture 3D printing products. As a result, the industry has become a top destination for software development professionals. Software developers in this field will write code to help improve 3D printing products as well as work cross-functionally with various teams, typically focusing on important aspects such as testability, maintainability, and scalability.

Computer Programmer

3D printing relies on skills and knowledge in science, technology, engineering, and math (as well as art), making computer programming another solid option for students interested in the field. These professionals use their expertise to write programs that produce solid structures of all shapes and sizes.

CAD or BIM Architect

CAD and BIM architects use software programs to design, generate and manage computer/digital representations of physical structures and infrastructures.

Research and Development (R&D)

R&D professionals explore new materials and processes and come up with new and better ways to develop—or improve—3D devices.

Animation Art and Design:

Animation artists and designers have traditionally been employed to create animation for television, films, video games and the like. The advent of CAD and 3D printing, however, has opened up new job options for these professionals. Employers generally require a bachelor’s degree. In addition to 3D printing, coursework should include drawing, sculpture, and CAD and computer graphics.

3D Environmental Artist

Architectural and design firms, graphic art firms, and computer game companies look for 3D environmental artists. Most jobs will require extensive experience and/or training in a variety of design software formats.

3D Modeler

3D modelers build 3D characters and environments using a variety of software programs. They may be employed to create video games, produce film effects, and design websites, but may also find employment making physical props for movie and television production companies or in creating 3D printed objects for other professionals such as architects, geologists and engineers.

Interior Designer

Interior designers are employed to make interior spaces in home and business environments safe, efficient, functional and beautiful. Advances in 3D printing have made it possible to create decorative objects and even furniture that can aid in this pursuit.

Architecture

3D printing has numerous applications in building design and construction, so it’s no surprise that a degree in architecture can open the door to 3D printing career opportunities. Be sure to look for programs that include concentrations and/or courses in 3D printing and CAD.

CAD or BIM Architect

CAD and BIM architects use software programs to design, generate and manage computer/digital representations of physical structures and infrastructures.

3D Environmental Artist

Architectural and design firms, graphic art firms, and computer game companies look for 3D environmental artists. Most jobs will require extensive experience and/or training in a variety of design software formats.

Interior Designer

Interior designers are employed to make interior spaces in home and business environments safe, efficient, functional and beautiful. Advances in 3D printing have made it possible to create decorative objects and even furniture that can aid in this pursuit.

Biomedical Engineering and Technology

This discipline combines science and engineering with biology and physiology to analyze and address problems within health and health care delivery. Graduates of this degree can go on to careers focused on developing and improving medical devices and procedures, which can include responsibilities such as creating and evaluating artificial organs, prostheses, or new equipment to maximize human performance.

Bioprinter

Bioprinting can be thought of as a subfield of 3D modeling. The main difference is focus, with 3D bioprinting concerning the production of living human tissue. Individuals in the bioprinting field are responsible for creating models that are used as the basis to 3D print any number of living body parts and even replacement organs.

Prosthesis and Implant Designer

3D printing of prostheses and implants is distinguished from bioprinting in that the devices created are artificial. Prosthesis and implant designers employ a variety of software programs in creating customized implants to suit specific patient needs.

Pharmaceutical Technologist

Pharmaceutical technologists employ 3D printing systems to produce highly individualized medications. 3D printing of medications allows for extremely precise dosages that can be accurately reproduced in quantity and in a wide range of formulations (pills, tablets, liquids, etc.).

Industrial Engineering

Engineering is the biggest source of today’s 3D printing professionals. Industrial engineers have traditionally been trained to eliminate waste in production processes and to increase productivity in the industrial environment. This taps into 3D printing as industrial engineers use it to design and build machinery that supports rapid prototyping and standardized production methods.

3D Machine Designer

3D machine designers are professionals employed to keep up with the ever-expanding demand for machines to create products with varying sizes, functions and materials for practically every industry in the market.

Educator

As the 3D printing industry expands, colleges and universities are seeking teachers with specific knowledge and experience with 3D printing systems to train future professionals. 3D printing educators may also be employed by private manufacturers to develop courses or workshops dedicated to 3D printing and related technology.

Industrial Designer

Industrial designers develop ideas and concepts for all types of manufactured products by combining knowledge in business, art and a variety of engineering fields. As 3D printing grows, it will require industrial designers who can integrate 3D printing technologies.

Mechanical Engineering

Because this discipline is a combination of design, construction, and machines it’s an ideal path for those interested in the 3D printing world. A degree in mechanical engineering gives students a strong mathematical background as well as skills and knowledge in applied physics that can be used in 3D printing as well as other fields that depend on math and analytics. Graduates will be able to design and manufacture just about anything, from small individual parts to large-scale systems and devices.

3D Machine Designer

3D machine designers are professionals employed to keep up with the ever-expanding demand for machines to create products with varying sizes, functions and materials for practically every industry in the market.

Educator

As the 3D printing industry expands, colleges and universities are seeking teachers with specific knowledge and experience with 3D printing systems to train future professionals. 3D printing educators may also be employed by private manufacturers to develop courses or workshops dedicated to 3D printing and related technology.

3D Printer Operator

3D printer operators are responsible for all aspects of running and maintaining 3D printing jobs, including setting up the machine and loading it with the proper materials; performing size calibrations; placing the tray and foundations; managing files; tracking the project’s progress; and performing machine maintenance between jobs. Positions in 3D printer operation may require a bachelor’s degree, but many can be obtained with an associate degree or certificate from a two-year community college or vocational training school.

Computer Programmer

3D printing relies on skills and knowledge in science, technology, engineering, and math (as well as art), making computer programming another solid option for students interested in the field. These professionals use their expertise to write programs that produce solid structures of all shapes and sizes.

CAD or BIM Architect

CAD and BIM architects use software programs to design, generate and manage computer/digital representations of physical structures and infrastructures.

Research and Development (R&D)

R&D professionals explore new materials and processes and come up with new and better ways to develop—or improve—3D devices.

3D Environmental Artist

Architectural and design firms, graphic art firms, and computer game companies look for 3D environmental artists. Most jobs will require extensive experience and/or training in a variety of design software formats.

3D Modeler

3D modelers build 3D characters and environments using a variety of software programs. They may be employed to create video games, produce film effects, and design websites, but may also find employment making physical props for movie and television production companies or in creating 3D printed objects for other professionals such as architects, geologists and engineers.

Interior Designer

Interior designers are employed to make interior spaces in home and business environments safe, efficient, functional and beautiful. Advances in 3D printing have made it possible to create decorative objects and even furniture that can aid in this pursuit.

Bioprinter

Bioprinting can be thought of as a subfield of 3D modeling. The main difference is focus, with 3D bioprinting concerning the production of living human tissue. Individuals in the bioprinting field are responsible for creating models that are used as the basis to 3D print any number of living body parts and even replacement organs.

Prosthesis and Implant Designer

3D printing of prostheses and implants is distinguished from bioprinting in that the devices created are artificial. Prosthesis and implant designers employ a variety of software programs in creating customized implants to suit specific patient needs.

Pharmaceutical Technologist

Pharmaceutical technologists employ 3D printing systems to produce highly individualized medications. 3D printing of medications allows for extremely precise dosages that can be accurately reproduced in quantity and in a wide range of formulations (pills, tablets, liquids, etc.).

3D Machine Designer

3D machine designers are professionals employed to keep up with the ever-expanding demand for machines to create products with varying sizes, functions and materials for practically every industry in the market.

Educator

As the 3D printing industry expands, colleges and universities are seeking teachers with specific knowledge and experience with 3D printing systems to train future professionals. 3D printing educators may also be employed by private manufacturers to develop courses or workshops dedicated to 3D printing and related technology.

Industrial Designer

Industrial designers develop ideas and concepts for all types of manufactured products by combining knowledge in business, art and a variety of engineering fields. As 3D printing grows, it will require industrial designers who can integrate 3D printing technologies.

3D Printer Operator

3D printer operators are responsible for all aspects of running and maintaining 3D printing jobs, including setting up the machine and loading it with the proper materials; performing size calibrations; placing the tray and foundations; managing files; tracking the project’s progress; and performing machine maintenance between jobs. Positions in 3D printer operation may require a bachelor’s degree, but many can be obtained with an associate degree or certificate from a two-year community college or vocational training school.

Effects on the Job Market

For the most part, innovations in technology have a positive impact on the job market. There are, however, some challenges when introducing a new industry. Below is a list of some of the benefits and challenges to the job market brought about by the explosion in 3D printing:

Effects on the Job Market
3D Prototyping and Modeling The transition from conventional methods of product prototyping and modeling has already resulted in increases in job opportunities for workers trained in CAD and related design programs. However, the days of clay modeling, for example, are numbered and workers skilled in it and other conventional modeling methods will require retraining or may find themselves moving on to other jobs.
Legal IssuesQuestions regarding the ramifications of 3D printing, particularly patent and intellectual property law, are having a growing effect on the legal profession. The U.S. Department of Commerce reports that the U.S. Patent and Trademark Office currently receives about 1,700 applications annually for additive material technologies. This translates into likely growth in law-related occupations, such as attorneys who specialize in the areas of patents and intellectual property.
Manufacturing JobsThe long-term effects on the manufacturing of goods due to 3D printing remain uncertain. Many speculate that it will result in fewer conventional manufacturing/assembly line positions globally, but may also spur the return to the United States of jobs outsourced overseas.
Retail JobsAccording to recent research, the 3D printing industry is expected to grow a staggering 56 percent in 2015. Such data has helped fuel speculation regarding the resulting effects on retail jobs. The question rests on just how pervasive the use of personal 3D printing of consumer goods will become. If individuals begin producing their own goods, there may be a drop in retail sales and, in turn, a decrease in retail jobs. On the other hand, an increase in 3D printer use may expand the need for retail sales forces in the industry itself.

Top Companies Leveraging 3D Printing

It’s estimated that approximately two-thirds of all companies today employ some level of 3D printing, but a few are true frontrunners, having taken the lead in using 3D printing and applying it to their businesses. Here are some notable companies who are leading the pack:

Airbus

The French aircraft manufacturer is a leader in the use of 3D printed parts in aviation. The company boasts that 3D printing has resulted in lighter parts, which requires less time and fewer materials to produce, with a corresponding drop in the environmental impact. Airbus recently announced that more than 1,000 parts used in the construction of its new A350 XWB aircraft are 3D printed.

Ford Motor Company

The iconic automobile company can justly be described as a 3D printing trailblazer, having purchased the third 3D printer ever made some thirty years ago, in 1986. Since then, Ford has 3D printed over 500,000 parts, a move the company estimates has saved billions of dollars and millions of work hours. Ford additionally uses 3D printing technology in its prototype production.

General Electric

The corporate powerhouse, General Electric, is a leading manufacturer of jet aircraft engines. GE has reported that in 2016 it will introduce the first 3D-printed parts in one of its aircraft engine platforms. Along with its partners, GE will use 19 3D-printed fuel nozzles in its engine’s combustion system, parts that could not be produced in any other way. Additionally, GE Aviation claims that it will produce more than 100,000 parts by the close of the decade.

Align Technology

Invisalign is a major manufacturer of clear aligners, an orthodontic alternative to conventional braces in the realignment of teeth. According to VentureBeat, Invisalign is the one of the largest users of 3D printing in the medical field today.

Nike

Nike is a world leader in the sports apparel industry, particularly when it comes to shoes. What may not be known is that Nike is also a leader in the use of 3D printing in its shoe design and manufacturing processes. A prime example is Nike’s Vapor HyperAgility Cleat, which combines 3D knitting with 3D shoe printing, one of three Nike cleats that employs 3D printing technology in its production.

3D Printing Resources

3ders.org

Excellent up-to-date resource for 3D printing news, reviews, shopping and more. Includes a robust forum section, informative videos on 3D printers and technology, and a useful FAQ page.

3d Printer

A solid resource for up-to-date information and news related to 3D printing. Excellent overview of 3D printing for beginners, with instructional videos. Links to pages featuring helpful apps and a 3D printer directory.

3D Printing Blog

Personal experiences form the basis of blog posts on a variety of subjects including industry news and developments in 3D printing hardware and software. Helpful photos and videos.

3D Printing for Beginners

Similar to the other general information sites listed here, but targeted at novice 3D printing enthusiasts. Features include a “Beginners Corner” blog.

3D Printing Industry

Excellent resource of news and commentary on the current state of the 3D printing industry. Included here are a good mix of articles, blog posts and instructional videos. The website also provides links to 3D Printing Industry’s social media sites.

Cubify 3D Printing Fans & Fun

A straightforward blog site with posts that touch on a wide array of subjects related to 3D printing. Includes an extensive library of “invent tutorials” and “moment of inspiration” videos.

Fabbaloo

Covers news and developments in the 3D printing industry and provides analysis of trends. An informative buying guide and extensive blog archive round out the site.

Shapeways

Website for the Dutch-based service that allows customers to design and upload 3D printable files of objects that the company then prints. The site is mentioned here for its helpful blog and forum links.

Tales of a 3D Printer

Interesting blog started by a middle school teacher with posts often written by his students. Contains a helpful reading list on 3D printing and discusses the possibilities of 3D printing and its use in education.

TedBlog

The well-known blog site’s page for stories on 3D printing. Interesting and informative posts from a variety of authors covering cutting-edge subjects and issues.

3D Perspective: Interviewwith Howard A. Kuhn, PhD

What’s the biggest benefit of 3D printing?

3D printing encourages you to be very, very creative. It allows people to get involved in manufacturing in a cheap way and, in doing so, unlock their inherent creativity.

If you were a student today about to head off to college and considering a career in the 3D printing field, what kind of degree or academic program would you be looking for?

There’s room for two kinds of careers in 3D printing. One is more at the technician level. These are people who would serve as machine operators, be involved in parts design, things like that. The career path for this person would be through community colleges. The other need is for engineers who are well steeped in the design possibilities that additive manufacturing brings. This is the level where you really have to understand the materials and machines in much more depth. The students I teach additive manufacturing to here [at the University of Pittsburgh] are engineering students. In fact, they’re all mechanical engineering students.

What field is 3D printing having the biggest impact on at this time?

I would say the biomedical field. That’s where the real applications [for 3D printing] are right now.

Can you give me an exciting example?

So, the scenario is this: Take a CAT scan of a damaged area [in a patient.] We transfer that CAT scan into a computer model and then [3D] print that. You put that in a bioreactor with hormones and stem cells from the patient. Those stem cells grow on a scaffold in the bioreactor. And after a couple of weeks, the cells have completely infiltrated into the part. The surgeon then takes it and puts in the patient’s body. Then over a long period of time—nine months, twelve months fifteen months—the cells in the tissues in the implant begin to grow into the surrounding tissue, and it eventually all becomes one.

The whole area is called regenerative medicine. However, this [technology] is nothing more than a “holding pattern” until actual printing of tissue or organs is realized, which may take many years, even decades. But it may come sooner. Maybe a lot sooner.

One thought on “3d Computer Design Essay

Leave a Reply

Your email address will not be published. Required fields are marked *